Área e Perímetro de um Hexágono – Fórmulas e Exercícios

O perímetro de um hexágono é o comprimento total de seu contorno. Por outro lado, a área representa o espaço bidimensional ocupado pela figura. Podemos encontrar o perímetro de um hexágono somando os comprimentos de seus seis lados, e podemos encontrar sua área multiplicando três por seu apótema e pelo comprimento de um de seus lados.

A seguir, aprenderemos tudo sobre o perímetro e a área dos hexágonos. Conheceremos suas fórmulas e as aplicaremos para resolver alguns exercícios práticos.

GEOMETRIA
Fórmulas-para-o-perímetro-e-área-de-um-hexágono

Relevante para

Aprender a calcular o perímetro e a área de um hexágono.

Ver exercícios

GEOMETRIA
Fórmulas-para-o-perímetro-e-área-de-um-hexágono

Relevante para

Aprender a calcular o perímetro e a área de um hexágono.

Ver exercícios

freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_01" });

Como calcular o perímetro de um hexágono?

Podemos calcular o perímetro de um hexágono somando os comprimentos de seus seis lados. Assim, podemos usar a seguinte fórmula:

$latex p=a+b+c+d+e+f$

onde, $latex a.~b,~c,~d,~e,~f$ são os seis comprimentos dos lados do hexágono.

Se tivermos um hexágono regular, sabemos que todos os seis lados têm o mesmo comprimento, então a fórmula do perímetro é:

$latex p=6a$

onde, a é o comprimento de um dos lados do hexágono regular.

hexágono-diagrama-com-seus-lados
freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_d1" });

Como calcular a área de um hexágono?

Podemos calcular a área de um hexágono regular usando o comprimento de um de seus lados e o comprimento de seu apótema. Assim, podemos usar a seguinte fórmula:

$latex A=3la$

onde, l é o comprimento de um dos lados do hexágono e a é o comprimento do apótema. Lembre-se que o apótema é o segmento que liga o centro do hexágono com um de seus lados.

Prova da fórmula para a área de um hexágono

Podemos demonstrar a fórmula da área de um hexágono usando o diagrama a seguir, onde dividimos o hexágono em seis triângulos congruentes.

diagrama-de-um-hexágono-com-lados-e-apótema

Agora, sabemos que a área de qualquer triângulo pode ser calculada usando a fórmula $latex A=\frac{1}{2}bh$, onde b é o comprimento da base e h é o comprimento da altura.

Neste diagrama, a base de cada triângulo é igual a um lado do hexágono e a altura é igual ao apótema, então a área de cada triângulo é igual a $latex A=\frac{1}{2}la $ .

Por fim, vemos que temos 6 triângulos equiláteros no hexágono, então multiplicamos a área obtida por 6 para obter $latex A=3la$, que é a área do hexágono.

Calcular a área do hexágono sem usar o apótema

Podemos obter uma fórmula para encontrar a área de um hexágono sem usar o comprimento do apótema. Para conseguir isso, precisamos encontrar uma expressão para o comprimento do apótema em termos do comprimento de um dos lados do hexágono.

Observando que os triângulos que traçamos no hexágono são equiláteros, podemos usar a fórmula da Altura de um Triângulo Equilátero: $latex h=\frac{\sqrt{3}}{2}l$, onde l é o comprimento de um dos lados do hexágono.

Então, substituindo este valor pelo valor de a, temos:

$latex A=3l(\frac{\sqrt{3}}{2}l)$

$latex A=\frac{3\sqrt{3}}{2}{{l}^2}$
freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_d2" });

Área e perímetro de um hexágono – Exercícios resolvidos

EXERCÍCIO 1

Encontre o perímetro de um hexágono regular com lados de 5 mm.

Solução

EXERCÍCIO 2

Encontre a área de um hexágono regular com lados de 4 cm de comprimento e um apótema de 3,46 cm de comprimento.

Solução

EXERCÍCIO 3

Encontre o perímetro de um hexágono regular com lados de 6 cm de comprimento.

Solução

EXERCÍCIO 4

Qual é a área de um hexágono regular com lados de 6 cm de comprimento e apótema de 5,2 cm de comprimento?

Solução

EXERCÍCIO 5

Qual é o perímetro de um hexágono regular com lados de 13 cm de comprimento?

Solução

EXERCÍCIO 6

Encontre a área de um hexágono regular com lados de 7 m de comprimento e um apótema de 6,06 m.

Solução

EXERCÍCIO 7

Qual é o comprimento dos lados de um hexágono regular com um perímetro de 72 m?

Solução

EXERCÍCIO 8

Encontre a área de um hexágono regular com lados de comprimento 5 mm.

Solução

EXERCÍCIO 9

Encontre o comprimento dos lados de um hexágono regular com um perímetro de 126 cm.

Solução

EXERCÍCIO 10

Qual é a área de um pentágono com lados de 8 m de comprimento?

Solução
freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_d3" });

Área e perímetro de um hexágono – Exercícios para resolver

Encontre o perímetro de um hexágono regular com lados de 11 mm.

Escolha uma resposta






Encontre a área de um hexágono regular com lados de 9 m de comprimento e um apótema de 7,8 m.

Escolha uma resposta






freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_p1" });

Qual é o perímetro de um hexágono regular com lados de 17 cm de comprimento?

Escolha uma resposta






Qual é a área de um hexágono regular com lados de 10 mm de comprimento e um apótema de 8,66 mm.

Escolha uma resposta






freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_p2" });

Encontre o comprimento dos lados de um hexágono regular com um perímetro de 78 m.

Escolha uma resposta






Encontre a área de um hexágono regular com lados de 12 cm de comprimento.

Escolha uma resposta






freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_3", slotId: "neurochispas_leaderboard_3_d4" });

Veja também

Interessado em aprender mais sobre perímetros e áreas de figuras geométricas? Você pode olhar para estas páginas:

    Foto de perfil do autor Jefferson Huera Guzman

    Jefferson Huera Guzman

    Jefferson é o principal autor e administrador do Neurochispas.com. O conteúdo interativo de Matemática e Física que criei ajudou muitos alunos.

    .author-box {margin: 70px 0; padding: 30px; background-color: #f9fcff; border-radius: 15px; box-shadow: 0px 0px 10px #ccc; max-width:1100px; margin-left:auto !important; margin-right:0px !important; } .author-box img {margin:auto; border-radius: 50%;} .author-box h3 {margin-top: 20px; font-size:19px;} .author-box p {margin: 10px 0; text-align:left; } .author-box a {display: inline-block; margin-right: 10px; color: black; text-decoration: none;} { "@context": "http://schema.org", "@type": "Person", "name": "Jefferson Huera Guzman", "image": "https://br.neurochispas.com/wp-content/uploads/2021/05/imagen-autor.png", "url": "https://br.neurochispas.com/jefferson-huera-guzman", "description": "Jefferson é o principal autor e administrador do Neurochispas.com.", "sameAs": [ "https://www.instagram.com/jeffersonhuera/", "https://www.jeffersonhuera.com/"], "email": "[email protected]", "worksFor": { "@type": "Organization", "name": "Interacti Digital LLC"}, "alumniOf": { "@type": "CollegeOrUniversity", "name": "The University of Manchester"}, "knowsAbout": [ "Algebra", "Calculus", "Geometry", "Mathematics", "Physics"] }

    Aprenda matemática com nossos recursos adicionais em diferentes tópicos

    APRENDER MAIS
    freestar.config.enabled_slots.push({ placementName: "neurochispas_leaderboard_1", slotId: "neurochispas_leaderboard_1_30" });